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Abstract- This paper investigates the applicability of high 
order statistical autoregressive (AR-HOS) modeling 
method in analyzing biomedical signals. The 
autoregressive (AR) method using linear prediction and 
AR-HOS method using cumulants are applied on normal 
and pathological heart sound signals.  It is found that the 
AR-HOS modeling a signal produce  more accurate and 
higher resolution spectrum than AR modeling.  
Keywords- Heart sound, signal modeling, high order 
statistic. 

 
I. INTRODUCTION 

 
Audible heart sounds carry a lot of valuable information 

about the condition of the patient’s heart. The spectral 
analysis of heart sounds give more useful information in 
detecting of heart disease than listening.  

Previous studies have indicated that traditional FFT 
analysis may not suitable to distinguish normal patient from 
abnormal patient due to limits on resolution [1]. It also may 
not produce accurate frequency spectra because the low-level 
heart sound are contaminated with considerable background 
noise [2], [3]. However the averaging processes in traditional 
method improve the estimate of the power spectra, it doesn’t 
reduce the influence of noise. 

Since the application of parametric modeling methods to 
signal identification problems can result in a better estimation 
of spectral features, model-based methods have been used to 
study and classify heart sounds [4]-[8]. A number of studies 
have shown that parametric modeling methods can be used to 
detect  sound associated with coronary stenosis [1], [3], [8], 
[7]. The parametric modeling methods in these studies 
generally use linear prediction algorithm methods, such as 
Levinson-Durbin or Yule-Walker algorithms based on 
autocorrelation matrix, to find out the autoregressive (AR) 
coefficient modeling the original signal. 

The application of the parametric modeling using 
autocorrelation matrix inherently assumes that the modeled 
signal is linear. In recent years, it has been suggested that 
heart dynamics may be nonlinear [8]. If this proposal is true, 
it may be used autoregressive higher order statistical (AR-
HOS) methods using cumulants to model heart sound. To 
examine the exact feature and extract more information 
involve in phonocardiographic signals, this contribution 
proposes the higher-order spectra for analysis of heart sounds. 
AR-HOS modeling can reveal more information than power 
spectrum can. The purpose of this contribution is to discuss 
AR and AR-HOS modeling of heart sounds on common 
known disease.  

 

II. METHODOLOGY 
 
A. AR Methods 
 

The AR model known as all -pole method is the most 
widely used modeling method to estimate the power spectral 
density (PSD) function associated with some biological 
signals [9]. Each sample of signal can be expressed as a 
linear combination of previous samples and an error signal. 
The error signal assumed to be independent of the previous 
samples [1], [4].  
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where y(n) represents the signal to be modeled, 

pa represent the AR coefficient of the AR process at the p th 

stage, )(ne  represents the estimated error signal, and M 
represents the AR model order [12].  

The AR estimation of the power spectral density function 
is given by 
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where 2σ  is the noise variance, and w is the frequency. 
The estimation of the PSD of the AR method was carried 

out by using Yule-Walker method [9]. 
 

B. AR-HOS Methods 
 

The AR-HOS methods also known as bispectral AR 
modeling based on third-order statistic (AR-TOS). The 
equation describing the autoregressive model is: 
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where, ny  represents a thp order AR process of N samples 

)1...1,0( −= Nn , ia  are the coefficient of the AR model, and 

nw are i.i.d., non-Gaussian, third order stationary, zero-mean, 

with { } 03 ≠= βnwE and ny  independent of lw  for ln < . 

Since nw  third-order stationary, ny  is also third-order 
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stationary, assuming it is a stable AR model. For the model of 
(3), it can be  written the cumulant-based ‘normal equations’ :  
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where, ),( 21 ττR  is the third order cumulant sequence (TOS) 
of the AR process.  In practice, it is used sample of the 
cumulants. (4) yields consistent estimates of the AR 
parameters maintaining the ortogonality of the prediction  
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c) 

Fig. 1. The AR spectrums of the heart sounds: (a)Normal 
heart sound. (b) Mitral Stenosis. (c) Aortic Stenosis. 
 

sequence to an instrumental process derived from the data 
[10]. 

The AR estimation of the power spectral density function 
is given by 
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where iâ  is estimated AR coefficients, and  w  is frequency 
[11]. 
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c) 

Fig. 2. The AR-HOS spectrums of the heart sounds: (a) 
Normal heart sound. (b) Mitral Stenosis. (c) Aortic Stenosis. 



 

C. Data Acquisition 
 

The database used to evaluate the methods is from a compact 
disk containing a selection of phonocardiogram (PCG) of 
normal and pathalogical heart sound and murmers.1  The three 
of these PCG’s were chosen because of characteristic of 
important clinical conditions and relatively low background 
noise level. The digitized sounds with 16 resolution at a 
sampling frequency 44.1kHz. was transferred into MATLAB 
environment to apply AR and AR-HOS signal modeling 
techniques. Since heart sounds don’ t contain significant in 
high frequency, the signals resampled at 1/20 rate to eliminate 
redundant data in order to decrease computational time in 
MATLAB.  

 
III. RESULTS 
 
Fig.1. represents the AR spectrums of the heart sounds 

having 15 coefficients. Since the application Akaike criterion 
demonstrated that between 5 and 15 AR coefficients are 
required to describe heart sound signals, the number of AR 
coefficient has chosen as 15 [3]. When Fig.2. is examined, it 
is observed that the diseased heart sound carry extra energy in 
high frequency relatively the normal heart sound. 

Fig.2. represents the AR-HOS spectrums of the same 
sounds. In this figure, the features of carrying extra energy in 
high frequency again. The AR-HOS spectrums of the normal 
and pathological heart sound also shows more evident peaks 
than AR spectrums.  

The results indicate that high order statistic is more  
applicable to biological signals. 

 
IV. DISCUSSION 

 
When we have applied the methods to all of the sounds in 

the database, we have reached the same result that AR-HOS 
modeling gives higher resolution in the spectrums than AR 
modeling with the same coefficient number. When the 
number of AR and AR-HOS coefficient reduced to 5 or 10, it 
was observed that the difference of resolution between two 
parametric modeling is kept on. 

 However, the AR-HOS modeling provide higher 
resolution, its algorithms to estimate the coefficient has more 
computational complexity. 

 
V. CONLUSION 

In this study, two advanced spectral methods have been 
applied to normal and pathological heart sounds to identify 
distinguishing features. Results showed that AR-HOS model 
is more capable of separating the normal patient from 
abnormal patient. The methods in this study are AR method 
based on linear prediction and AR-HOS method based on 
third order cumulants in high order statistical analysis. 

Since the coefficients in parametric modeling methods are 
used in classification problems, the coefficients obtaining 
from AR-HOS modeling wil l give better result.  

Consequently, we propose AR-HOS modeling in 
examination of heart sounds. Since produce more resolution  
result, it should be used in features extraction in 
classification operations such as neural networks. 

 
1 Heart sound and murmurs recorded by Morton E. Tavel, M. D., 

Professor of Medicine, Indiana University, School of Medicine and 
consulting cardiologist with Northside Cardiology Inc., Indianapolis, USA. 
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